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1. Introduction

Chiral perturbation theory is the effective low-energy field theory of the strong interactions,

describing the dynamics of pseudo-Goldstone bosons (π,K, η) in an expansion in powers

of external momenta and quark masses.

It was almost thirty years ago when Weinberg first introduced the chiral Lagrangian [1],

in an effort to translate the current algebra relations of chiral symmetry into a Lagrangian

formulation. This pioneering work was soon followed by the seminal papers of Gasser

and Leutwyler [2, 3], extending the chiral Lagrangian up to the next order in the chiral

expansion (O(p4) in Weinberg’s power counting scheme) and embedding it into a framework

where Green’s functions could be easily computed. In particular, they accounted for the

set of Green’s functions containing the Dirac bilinears ψ̄ γµψ, ψ̄ γµγ5ψ, ψ̄ ψ and ψ̄ iγ5ψ.

Later on, and motivated by the increasing experimental accuracy, the Lagrangian was

pushed to the two-loop order (O(p6)) for the even-parity [4, 5] and odd-parity sectors [6,

7]. There is no theoretical difficulty in going to higher orders. Rather, the limitations
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come from the experimental inputs required to determine the growing number of free

parameters.1

There have been efforts to extend the Lagrangian in the chiral expansion, but not

in the number of external fields. In particular, no systematic introduction of the tensor

Dirac bilinear ψ̄σµνψ has been attempted. This can be partially explained because, as

opposed to other Dirac currents, there is no physical realization of the tensor field coupled

to the tensor Dirac bilinear in the Standard Model (SM). However, this does not mean that

their phenomenology is uninteresting. For a long time several studies have turned their

attention to Green’s functions coupled to Dirac tensor sources, both from the sum rule

perspective [8]–[12] and, more recently, from the lattice QCD perspective [13]. Moreover,

non-forward hadronic matrix elements of the Dirac tensor operator have recently attracted

some attention because of their relevance in the study of generalized parton distributions

(GPDs) of hadrons. In particular, the chiral realization of the tensor operator relevant

for the GPDs of the pion was recently determined using the method of spurion fields (see,

for instance, [14, 15] and references therein). A further phenomenological motivation for

introducing such currents can be found when studying interactions beyond the SM. In

certain scenarios one needs to calculate the hadronic matrix elements of tensor currents

(see, for instance, [16]). It is the purpose of this paper to provide a consistent low-energy

framework for such studies.

The paper is organized as follows: in section 2 we apply the external source method to

the tensor sources coupled to the Dirac bilinear ψ̄σµνψ and identify the list of basic elements

out of which we will construct the Lagrangian. Section 3 deals with the construction

of the Lagrangian up to the p6-order. We list the full set of operators invariant under

Lorentz, chiral SU(nf )L×SU(nf )R and discrete symmetries, and reduce them to a minimal

set through the use of the lowest-order equations of motion, integration by parts and

Bianchi identities. If one specializes to the two-flavor and three-flavor cases, which are

the phenomenologically relevant ones, further constraints are also provided by the Cayley-

Hamilton relations. They are explicitly listed in the appendix. Contact terms are discussed

in section 4. Section 5 is devoted to the odd-intrinsic-parity sector, while in section 6 we

comment on the chiral counting for tensor sources. Finally, we give our conclusions in

section 7. Phenomenological applications are relegated to a companion paper.

2. Preliminaries: chiral building blocks

Chiral perturbation theory (χPT) is the effective field theory describing the strong in-

teractions at very low energies. It is based upon the global SU(nf )L × SU(nf )R flavor

symmetry (nf = 2, 3) spontaneously broken down to SU(nf )V . The φa = (π,K, η) fields

are assumed to be the Goldstone bosons of the theory and therefore their interactions

are completely described by Goldstone dynamics. The general formalism for effective La-

grangians with spontaneously broken symmetries was worked out by Callan, Coleman,

1Already at O(p6), there are more than 100 low-energy couplings. Obviously, for certain physical pro-

cesses only a few of these NNLO low-energy couplings need to be determined. It is for these processes that

the two-loop computation is predictive.
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Wess and Zumino [17] and it is explained in detail for instance in ref. [18]. In particular,

for our case it implies that the Goldstone bosons have to transform as

u(φa) → R u(φa)h† = hu(φa)L† , (2.1)

where R(L) ∈ SU(3)R(L), h ∈ SU(3)V and u(φa) is a unitary non-linear representation of

the Goldstone modes, typically

u(φa) = exp

(

i

2F0
φaλa

)

. (2.2)

The chiral Lagrangian can then be built out of the invariant operators of u(φa) and its

derivatives (or also commonly U(φa) = u(φa)2 and its derivatives).

However, in order to compute Green’s functions, it is convenient to introduce a set of

external fields, one for each QCD current we want to account for, both in the QCD and

χPT Lagrangians. Enforcement of chiral Ward identities can then be easily achieved by

promoting our global chiral symmetry to a local one [19]. This is the basis of the external

field method [2], which we will briefly sketch below with the inclusion of the tensor external

field.

In terms of the effective action, the addition of external fields reads

Z[vµ, aµ, s, p, t̄µν ] =

∫

Dψ̄DψDGµ exp

[

i

∫

d4x
{

L0
QCD + Lext(vµ, aµ, s, p, t̄µν)

}

]

,

=

∫

DUDU † exp

[

i

∫

d4xLχ(U ; vµ, aµ, s, p, t̄µν)

]

, (2.3)

where L0
QCD is the massless QCD Lagrangian and

Lext = ψ̄ γµ(vµ + γ5 aµ)ψ − ψ̄(s − i γ5 p)ψ + ψ̄ σµν t̄µν ψ , (2.4)

where vµ, aµ, s, p and t̄µν are hermitian matrices in flavor space. The vector and axial-

vector external fields are chosen to be traceless in flavor space, but the rest of them will in

general have a non-vanishing trace; for instance

t̄µν =
8

∑

a=0

λa

2
t̄µν
a , (2.5)

with λ0 =
√

2/nf 1nf×nf
. In order to manifestly show the chiral symmetry, it is convenient

to first rotate our fields to the chiral basis, with projections given by

ψL ≡ PL ψ =

(

1 − γ5

2

)

ψ , ψR ≡ PR ψ =

(

1 + γ5

2

)

ψ , (2.6)

from which one can readily conclude that

rµ = vµ + aµ; lµ = vµ − aµ; χ = 2B0 (s + ip) , (2.7)

where rµ and lµ are coupled to right-handed and left-handed currents, respectively, while

χ mixes the chiral sectors. B0 is related to the quark condensate.
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For the tensor field, one finds that

ψ̄ σµν t̄µνψ = ψ̄Lσµνt†µνψR + ψ̄R σµνtµνψL , (2.8)

and the change of basis reads

t̄µν = Pµνλρ
L tλρ + Pµνλρ

R t†λρ ,

tµν = Pµνλρ
L t̄λρ , (2.9)

where Pµνλρ
L,R are the analogs of PL,R in eq. (2.6) for the tensor fields, given by2

Pµνλρ
R =

1

4
(gµλgνρ − gνλgµρ + i εµνλρ) ,

Pµνλρ
L =

(

Pµνλρ
R

)†

. (2.10)

Indeed, one can check that they satisfy the usual properties of chiral projectors

Pµνλρ
R P λραβ

R = Pµναβ
R ,

Pµνλρ
L P λραβ

L = Pµναβ
L ,

Pµνλρ
L P λραβ

R = 0 . (2.11)

Eq. (2.9) above just states the fact that tµν and t†µν are the left and right-handed projections

of the tensor field and can be seen as the analog of eq. (2.7). Notice that the chiral rotation

mixes vµ and aµ, s and p and the tensor with itself. This is precisely what one expects,

since γ5 acting on σµν is not an independent Dirac matrix, but decomposable in terms of

σµν alone.

The next step is to promote the chiral symmetry to a local one. This sets the following

chiral transformations for the various external fields

rµ → R rµ R† + iR ∂µ R† ,

lµ → L lµ L† + iL ∂µ L† ,

χ → R χL† ,

tµν → R tµν L† , (2.12)

together with a covariant derivative for the pion field, namely

DµU = ∂µU − i rµ U + i U lµ , DµU → R (DµU)L† ;

DµU † = ∂µU † + i U † rµ − i lµ U † , DµU † → L (DµU †)R† . (2.13)

For the right and left-handed fields, field strength tensors arise naturally:

[Dµ,Dν ]X = iXFµν
L − i Fµν

R X , (2.14)

2In getting to (2.10) use has been made of the algebraic identity

σ
µν

γ5 =
i

2
ε

µνλρ
σλρ .

The convention ε0123 = +1 for the Levi-Civitá tensor εµναβ will be used throughout this paper.
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with

Fµν
L = ∂µlν − ∂ν lµ − i [lµ, lν ] , Fµν

R = ∂µrν − ∂νrµ − i [rµ, rν ] . (2.15)

The set (U,Fµν
L,R, χ, tµν), along with their adjoints and covariant derivatives, are the building

blocks to construct a theory with chiral symmetry. The next step would be to assemble

them together in chiral invariant combinations which respect parity, charge conjugation

and hermiticity.

However, the building blocks listed above transform differently under the chiral group.

This is not a problem when one is dealing with the lowest orders in the chiral expansion,

where the combinatorics are simple and only a small number of operators result. However,

already at next-to-leading order the number of operators involved recommends to deal with

building blocks in a more efficient way. We will follow the conventions of [5, 20] and work

with the following set of hermitian and anti-hermitian terms,

uµ = i
{

u†(∂µ − irµ)u − u(∂µ − ilµ)u†
}

≡ i u† DµU u† ,

hµν = ∇µuν + ∇νuµ ,

fµν
± = uFµν

L u† ± u† Fµν
R u ,

tµν
± = u† tµν u† ± u tµν † u ,

χ± = u† χu† ± uχ† u , (2.16)

where signs are correlated. The main advantage of this new set of operators is that they

all transform in the same manner under the chiral group, namely

hX h† , X = uµ, fµν
± , tµν

± , . . . (2.17)

As a result, one can define a unique covariant derivative for them all, e.g.,

∇ρX = ∂ρX + [Γρ,X] , Γρ =
1

2

{

u†(∂ρ − irρ)u + u(∂ρ − ilρ)u
†
}

, (2.18)

where the last term is the chiral connection. Analogously to eq. (2.13), there is a field

strength tensor associated to the covariant derivative, namely

[∇µ,∇ν ] X = [Γµν , X] , (2.19)

with

Γµν = ∂µΓν − ∂νΓµ + [Γµ,Γν ] =
1

4
[uµ, uν ] −

i

2
f+µν . (2.20)

Both the sets (U (†), Fµν
L,R, χ(†), t

(†)
µν ) and (uµ, hµν , fµν

± , χ±, tµν
± ) are complete.3 Therefore,

both can be used to build the chiral Lagrangian. The latter set, as mentioned previously,

eases the path to determining the full set of operators in the chiral Lagrangian and will be

adopted in the next section. The former set, however, has no mixing between Goldstone

modes and external fields and it will prove useful in section 4, when we will isolate contact

terms.

3Note that uµ is self-adjoint and the combination ∇
νuµ

−∇
µuν = f

µν
−

and therefore it is redundant.
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O P C h.c.

uµ −uµ (uµ)T uµ

hµν −hµν (hµν)T hµν

χ± ±χ± (χ±)T ±χ±

fµν
± ±f±µν ∓(fµν

± )T fµν
±

tµν
± ±t±µν −(tµν

± )T ±tµν
±

Table 1: Various transformation properties of the elements of eq. (2.16).

3. Construction of the effective lagrangian

The whole set of operators including tensor sources can now be built by assembling together

the building blocks of eq. (2.16) (and their covariant derivatives) in traces and products of

traces thereof with the help of table 1, such that the Lagrangian be hermitian and invariant

under discrete symmetries.

Prior to the actual construction of the Lagrangian, however, all (external) fields have to

be endowed with a power counting, such that the resulting operators can be accommodated

in the chiral expansion. In order to have only even terms in the chiral expansion, it is

convenient to choose

U = u2 ∼ O(p0) ,

vµ, aµ ∼ O(p1) ,

χ ∼ O(p2) ,

tµν ∼ O(p2) . (3.1)

With these conventions, operators with tensor fields appear first at O(p4).

3.1 Chiral Lagrangian to lowest order

When the external tensor field is switched on, one finds the following operators

LχPT
4 = Λ1 〈 tµν

+ f+µν 〉 − iΛ2 〈 tµν
+ uµuν 〉 + Λ3 〈 tµν

+ t+µν 〉 + Λ4 〈 tµν
+ 〉2 , (3.2)

where 〈· · · 〉 stands for the trace in nf flavor space. In eq. (3.2) and all through our

analysis we will make extensive use of the tracelessness properties 〈rµ〉 = 0 = 〈Fµν
R 〉,

〈lµ〉 = 0 = 〈Fµν
L 〉 and 〈uµ〉 = 0 = 〈fµν

± 〉.

It is interesting to remark that a potential contact term like tµν t†µν in eq. (3.2) cancels

identically due to orthogonality of chiralities, as can be easily checked using the chiral

projectors of eq. (2.9).4 Hence, it follows that tµν
+ t+µν = tµν

− t−µν and tµν
+ t−µν = tµν

− t+µν . These

relations have been used in deriving eq. (3.2) and will be used hereafter.

We also note that eq. (3.2) is valid for any number of flavors. Cayley-Hamilton trace

relations (to be discussed in the appendix) do not provide extra constraints.

4Obviously, the tensor source is not a Lorentz scalar, and contact terms involving det (tµν) are forbidden.
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3.2 Higher order terms

At next-to-leading order (O(p6)), the number of operators with tensor sources increases

considerably. The purpose of this section is to sketch the steps followed in reaching the basis

of chiral invariant operators listed in table 2. In particular, we will outline the strategies

followed to reduce the set of operators to a non-redundant minimal one, focussing on the

results obtained rather than giving the technical details, which can be found in [4, 5].

The full set of O(p6) operators which results from combining the building blocks of

eq. (2.16) and their covariant derivatives falls into one of the following generic groups

tµν tµν uα uα ; tµν fµν χ ; tµν tµν χ ;

tµν χ uµ uν ; tµν fµρ f ν
ρ ; tµν tνρ hµ

ρ ;

tµν hνρ uρ uµ ; tµν hµα hν
α ; tµν tνρ fµ

ρ ;

tµν fµν uα uα ; tµν χµ uν ; tµν tµρ tνρ ;

∇ρ tµν ∇
ρ tµν ; tµν hµα f ν

α ; ∇µ tµν ∇α fαν ;

∇ρ tµν hµρ uν ; ∇µ tµν f νρ uρ ; ∇λ tµν tµν uλ ;

tµν uα uµ uν uα ; (3.3)

where emphasis has been placed only on operator combinations, i.e., traces and i factors

have been omitted and ± subscripts have been skipped for simplicity. Also, we have used

the short-hand notation ∇µ χ ≡ χµ. The previous list is however complete in the sense

that it contains all the independent operator combinations. For instance, operators like

∇λ tµν χλ are generically C-violating and ∇µ tµν uν uα uα or tµν ∇λfµν uλ can be shown to

be redundant using partial integration and the chain rule.

Table 2 lists the full set of hermitian operators invariant under parity and charge

conjugation, organized in blocks of operators below each of the representatives of eq. (3.3).

Obviously, the most challenging task in going from eq. (3.3) above to our final set

of operators in table 2 is to make sure that the set is minimal, i.e., linearly dependent

operators have been removed and we can talk of a true chiral basis of operators. In the

following we will discuss the commonly used strategies, namely integration by parts, use

of the equations of motion5 and the Bianchi identity.

3.2.1 Partial integration and equations of motion

Integration by parts was already used to get to eq. (3.3). The list can be further reduced,

however, if one notices that the covariant derivatives of uµ satisfy

∇µuν =
1

2
(hµν − f−µν ) . (3.4)

Furthermore, the lowest-order equations of motion for the chiral Lagrangian read

∇µuµ =
1

2 i

(

〈χ−〉

nf

− χ−

)

. (3.5)

5In determining the higher order terms in the chiral expansion the equations of motion for the leading

order can be used. As discussed in [5], its enforcement is equivalent to a transformation of fields and

therefore physics is left invariant.
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If we combine eqs. (3.4) and (3.5) with integration by parts we find the following relations,

i
{

∇λtµν
− , t+µν

}

uλ = −i
{

∇λtµν
+ , t−µν

}

uλ + tµν
+ t−µνχ− −

1

nf

tµν
+ t−µν〈χ−〉,

i
{

∇µtµν
− , t+νλ

}

uλ = −i
{

∇λtµν
+ , t−νλ

}

uµ +
i

2

{

tµ+ν , t−µα

}

hνα +
i

2

{

tµ+ν , t−µα

}

f να
− ,

i
{

∇µtµν
+ , t−νλ

}

uλ = −i
{

∇λtµν
− , t+νλ

}

uµ +
i

2

{

tµ+ν , t−µα

}

hνα −
i

2

{

tµ+ν , t−µα

}

f να
− ,

(3.6)

where in the first line the lowest-order equations of motion of eq. (3.5) have been used.

The second and third relations follow from eq. (3.4).

Further relations can be found using the properties of the chiral connection listed in

eqs. (2.19) and (2.20). In particular,

∇λ t+λν ∇ρ tρν
+ − ∇ρ t+λν ∇

λ tρν
+ = [Γλρ , t+ν

λ ] t+ρν = −
1

2
Y11 +

1

2
Y12 + Y90 ,

∇λ t−λν ∇ρ tρν
− − ∇ρ t−λν ∇

λ tρν
− = [Γλρ , t−ν

λ ] t−ρν = −
1

2
Y23 +

1

2
Y24 + Y91 ,

∇λ t+λν ∇ρ fρν
+ − ∇ρ t+λν ∇

λ fρν
+ = [Γλρ , t+ν

λ ] f+
ρν =

1

4
Y59 −

1

4
Y60 − Y85 , (3.7)

where the Yi operators can be found in table 2. We have chosen to eliminate the second

operators in the left-hand side in the equations above. In a similar fashion (but after a more

involved calculation), one can show that i
〈

∇ρt+µν

{

fµν
− , uρ

}〉

and i
〈

∇ρt+µν

{

fµρ
− , uν

}〉

are

also redundant.

3.2.2 Bianchi identity

In eqs. (2.18)–(2.20) we introduced the chiral connection and the field strength Γµν that

naturally stems from it. There is also an associated Bianchi identity, which in this case

takes the form

∇µ Γνρ + ∇ν Γρµ + ∇ρ Γµν = 0. (3.8)

Tracing this equation with ∇ρ tµν
+ and integrating by parts we get one additional rela-

tion between operators. Accordingly, we choose to remove from our list the operator

i
〈

∇ρ t+µν∇ρ fµν
+

〉

.

4. Contact terms

So far, to the best of our knowledge the number of operators for general nf is complete and

minimal. However, in our list there are contact terms, i.e., combinations of operators which

only depend on external sources. Since they do not contain the pion field, they cannot be

determined from phenomenology, but are necessary to correctly account for the ultraviolet

behavior of Green’s functions.

In the basis or hermitian and anti-hermitian chiral invariants we have been using,

contact terms do not arise in a natural way. Instead, they are hidden in linear combinations

– 8 –
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of operators. As we already discussed, chirality prevents a contact term like tµνt†µν at order

O(p4). At the next order, one finds the following contact terms

〈

DµtµνDαt†αν

〉

=
1

4

〈

∇µtµν
+ ∇αt+αν

〉

−
1

4

〈

∇µtµν
− ∇αt−αν

〉

−

−
i

4

〈

∇µtµν
+ {t−αν , uα}

〉

+
1

16

〈

t+µν

(

uνtµα
+ uα+uαtµα

+ uν
)〉

+

+
1

8

〈

t+µνt
µα
+ uαuν

〉

−
1

16

〈

t−µν

(

uνtµα
− uα + uαtµα

− uν
)〉

−

−
1

8

〈

t−µνt
µα
− uαuν

〉

+
i

4

〈

∇µtµν
− {t+αν , u

α}
〉

,

〈

t†νρtµρFLµν + tνρt†µρFRµν

〉

=
1

4

〈

tνρ
+ tµ+ρf+µν

〉

−
1

4

〈

tνρ
− tµ−ρf+µν

〉

+
1

4

〈{

tνρ
+ , tµ−ρ

}

f−µν

〉

,

〈

tµνχ†Fµν
R +χ†tµνF

µν
L +h.c.

〉

=
1

4

〈

t+µν

{

fµν
+ , χ+

}〉

+
1

4

〈

t−µν

[

fµν
− , χ+

]〉

−

−
1

4

〈

t−µν

{

fµν
+ , χ−

}〉

−
1

4

〈

t+µν

[

fµν
− , χ−

]〉

, (4.1)

where ∇µtµν
± = (Dµtµν)± + i

2

{

uµ, tµν
∓

}

has been used in the first relation. We will in-

corporate the previous contact terms in our basis, and accordingly remove the following

monomials, which otherwise would be redundant:

i
〈{

tνρ
+ , tµ−ρ

}

f−µν

〉

= −Y90 + Y91 + 4Y119 ,

i
〈

∇µtµν
− {t+αν , u

α}
〉

= −
1

2
Y11 −

1

4
Y13 +

1

2
Y23 +

1

4
Y25 − Y52 + Y53 − Y105 + 4Y118 ,

〈

t−µν

[

fµν
− , χ+

]〉

= −Y74 + Y75 + Y76 + 4Y120 . (4.2)

All the relations discussed above finally reduce the number of operators to 117 and 3

contact terms. This is the number of independent operators for any number of flavors.

However, only nf = 2, 3 are phenomenologically relevant. For such cases, the Cayley-

Hamilton theorem provides further relations between traces. For reference, we list them

in the appendix. After enforcing the Cayley-Hamilton relations, we end up with 110+3

independent operators for three flavors and 75+3 for two flavors.

In order to have a minimal basis of O(p6) chirally invariant monomials with tensor

sources, we have followed the same procedure as in ref. [5]. However, a recent paper [21]

has pointed out that the basis of [5] for two flavors is not yet minimal: an identity among

several operators of that basis was found, which does not become trivial when setting

to zero the external sources. Interestingly, such identity does not require new algebraic

manipulations other than the Cayley-Hamilton relations, Bianchi identities, partial inte-

gration and equations of motion. The fact that even after the sophisticated analysis of [5]

an additional relation was found shows that reaching a minimal set of operators at higher

orders in the chiral expansion is quite a challenging task. With tensor sources, however,

highly nontrivial relations such as the one reported in ref. [21] are unlikely to be found,

mainly because: (a) the tensor source does not enter the lowest order equations of motion

and (b) there is no Bianchi identity associated with it. As a result, algebraic manipulations

are simpler and we do not expect our basis to suffer further reduction.
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5. A comment on the odd-intrinsic-parity sector

So far we have restricted our analysis to the even-intrinsic-parity sector of the chiral ex-

pansion. The odd-intrinsic-parity sector is related to the chiral anomaly, since the low-

est order contribution to this sector comes precisely from the Wess-Zumino-Witten term.

For pions alone, its form is fixed by cohomology theory and can be formulated on a 5-

dimensional manifold [22]. However, the terms that involve external sources can be cast as

a four-dimensional integral of chiral invariant densities, i.e., they are proportional to the

Levi-Civitá tensor εµνσρ.

In the presence of external sources, the anomalous chiral Lagrangian is known to

contribute already at O(p4). In [6, 7] the basis of operators at the next order was determined

for vector, axial, scalar and pseudoscalar sources. In the following we will argue that the

odd-parity sector involving tensor sources only starts at the p8-order.

In order to obtain the lowest order odd-intrinsic operators in the chiral expansion, the

tensor source must have some indices contracted with the Levi-Civitá symbol. In what

follows we will show that all such possible contractions identically reduce to even-parity

operators.

Consider first the case when both tensor indices are contracted with the Levi-Civitá

symbol, e.g.,

εµνσρ tµν
± Bσρ , (5.1)

where Bσρ stands for any tensor structure compatible with chiral and discrete symmetries.

From the definition of the chiral projectors, eq. (2.10), one can write

εµναβ = 2 i
(

Pµναβ
L − Pµναβ

R

)

, (5.2)

whence it follows that

εµναβ tαβ
± = 2 i t∓µν , (5.3)

and therefore such terms are not present in the odd-intrinsic-parity sector. Notice that this

is a consequence of the fact that the tensor source has no chiral partner, or equivalently

that γ5 σαβ is not an independent Dirac structure.

Consider now the case when only one of the indices of the tensor operator is contracted

with the Levi-Civitá density, namely6

εµναβ tµγ
± B ναβ

γ , (5.4)

where B ναβ
γ stands for any generic chiral tensor (completely antisymmetric in ν, α and β)

made out of the elements of eq. (2.16). We will use the Schouten identity in the form:

gργεµναβ − gρµεγναβ − gρνεµγαβ − gραεµνγβ − gρβεµναγ = 0 , (5.5)

which stems from the fact that any 5-form vanishes in 4 dimensions. Contracting it with

tµγ
± B ναβ

γ it is not difficult to show (with the use of eq. (5.3)) that it can be rewritten in

the following way:

εµναβ tµγ
± B ναβ

γ = 3 i t∓αβB ναβ
ν , (5.6)

6All other contractions can be rendered equivalent to this one by means of partial integration.
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which shows that eq. (5.4) does not contribute to the odd-parity sector.

However, when none of the indices of the tensor source is contracted with the Levi-

Civitá density, odd-parity operators will in general arise. If we take, for instance, any of

the operators of our basis at O(p4) and multiply it by any of the O(p4) odd-intrinsic-parity

operators of ref. [6] we will get an odd-intrinsic-parity operator involving tensor currents.

But this operator will be at least of O(p8), as anticipated, and it falls beyond the scope of

the present work.

6. On the power counting for the tensor source

In this section we will elaborate a bit more on our choice for the chiral counting of tensor

sources.

Let us begin by briefly reviewing the chiral counting for the other Dirac external fields.

In section 2 we motivated the introduction of external fields coupled to QCD currents as a

way to automatically ensure the chiral Ward identities when computing Green’s functions.

For this to happen, the global chiral symmetry of the QCD Lagrangian has to be promoted

to a local one. From the point of view of external fields, this step only affects the vector

and axial-vector sources, which play the role of chiral gauge fields and therefore enter the

chiral covariant derivative when it replaces the ordinary one. One is then naturally led

to make the chiral dimension of the vector and axial-vector sources coincide with that of

the ordinary derivative, i.e., vµ, aµ ∼ O(p). Notice that no reference to the actual physical

meaning of the sources was needed: gauge invariance is enough and the sources can be

regarded as formal entities.

However, for scalar and pseudoscalar sources the situation changes. In order to moti-

vate their chiral scaling contact has to be made with QCD through quark masses. Quark

masses can be formally introduced as external scalar sources, and chiral invariance groups

the scalar and pseudoscalar densities in the combination χ = 2B0(s + i p) (and its her-

mitian conjugate), where B0 can be seen as a coupling required by näıve dimensional

analysis. The Gell-Mann-Oakes-Renner relation for the pion mass sets m2
π = B0 (mu +md)

and one is naturally led to consider χ ∼ m2
π ∼ O(p2). This scaling assignment is of course

subject to assuming B0 ≫ F0, which seems to be the picture supported by phenomenol-

ogy. Incidentally, since scalar external sources have a physical realization as the quark

masses, the combination B0mq is renormalization invariant and the coupling B0 can be

determined by matching χPT onto the QCD Lagrangian, yielding the well-known result

B0 = −
〈

ψ̄ψ
〉

F−2
0 .

Therefore, gauge symmetry alone motivates the scaling for vector and axial-vector

sources, whereas the momentum scaling for scalars and pseudoscalars is suggested by the

way chiral symmetry is (explicitly) broken.

Let us examine the situation for tensor sources. The tensor field coupled to ψ̄ σµνψ

induces a chirality flip (much like scalars and pseudoscalars do) and therefore transforms

in the same way under a chiral transformation. However, unlike scalars and pseudoscalars,

tensor fields do not have a physical realization as symmetry breaking terms in the chiral

Lagrangian. Their chiral power counting is therefore not motivated by physical arguments
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and should be seen only as a formal theoretical tool to compute Green’s functions. What-

ever choice is made for the chiral counting, it will only affect the way operators with

different number of tensor sources are organized in the chiral expansion.7 A convenient

choice is to assign the tensor source with the same chiral counting as the scalar and pseu-

doscalar sources, i.e., t̄µν ∼ O(p2). This has two main advantages: (a) the tensor source

only generates even terms in the chiral expansion, and therefore does not change the stan-

dard chiral counting scheme; (b) operators involving resonance exchange appear at O(p4),

leaving only universal terms at O(p2).

Since we are assigning the same chiral counting to all spin-flipping sources s, p and

t̄µν , one could equally well define, by analogy to χ = 2B0 (s + ip), a tensor chiral field

τµν = b0 t̄µν . Here b0 would be the analog of B0 for tensor fields. One advantage of

introducing a dimensionful parameter b0 is that all the low-energy couplings at a given

order in the chiral expansion would then have the same mass dimension. For instance, at

O(p4), the complete set of chiral low energy couplings

Li, i = 1, . . . , 10; H1,H2; λj , j = 1, . . . , 4, (6.1)

are dimensionless, where λj are defined in terms of the Λj of eq. (3.2) as Λj = bn
0 λj , n

being the number of tensor sources in the associated operators. For instance, Λ1 = b0 λ1

but Λ3 = b2
0 λ3.

Furthermore, notice that all operators with external fields we added to the QCD La-

grangian in eq. (2.4) are, by construction, scale invariant. Conservation of vector and

axial-vector currents (in the chiral limit) implies in turn that vµ and aµ are also scale in-

variant. On the other hand, the anomalous dimensions of the QCD scalar and pseudoscalar

currents are known to be the opposite to that of the quark masses, implying that s and p

run like the quark masses. Since the combination B0 mq is scale invariant, it follows that

χ is also invariant. Thus, by analogy, b0 is purported to make τµν renormalization-group

invariant.

This can be understood by means of a renormalization group analysis. For the tensor

current,

µ
d

dµ
Tαβ = − γT Tαβ , (6.2)

where Tαβ = ψ̄ σαβ ψ and γT is the tensor anomalous dimension. In the high momentum

transfer regime (µ ≫ ΛQCD), the anomalous dimension can be computed to give

γT = CF
αs

2π
+ O(α2

s) . (6.3)

Invariance of the QCD Lagrangian implies that the tensor external source t̄µν has to evolve

as

µ
d

dµ
t̄αβ = γT t̄αβ . (6.4)

7Obviously, the chiral expansion of the different Green’s functions with tensor sources is insensitive to

the eventual choice of chiral counting for the external fields.
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q

Vµ Tνρ

(a)

TνρVµ

q
(b)

Vµ Tνρ

q

πb

πa

(c)

Figure 1: Diagrams contributing to (a) the tree level and (b,c) the one-loop renormalization of

ΠV T (q2). Dotted, square and circle cross vertices correspond, respectively, to O(p2), O(p4) and

O(p6) operators in χPT.

Consider now a term in the χPT Lagrangian with n tensor sources, Λ(n) On(t̄µν). When re-

lated to QCD parameters, the low energy coupling Λ(n) will pick the QCD scale dependence.

Defining τµν = b0 t̄µν , the term can now be written as Λ(n) On(t̄µν) = λ(n) On(τµν) =

(bn
0 λ(n))On(t̄µν). Therefore Λ(n) = bn

0 λ(n) and all the QCD scale dependence is contained

in b0, namely

µ
d

dµ
b0 = − γT b0 . (6.5)

This is in complete analogy to the role played by B0 in the scalar-pseudoscalar sector. This

analogy can be best illustrated with the following example.

6.1 A simple application: One loop corrections to ΠVT

Consider the following two-point correlator in the chiral limit

ΠV T
µ;νρ(q) = i

∫

d4x eiq·x
〈

0
∣

∣

∣
T

{

Vµ(x)T †
νρ(0)

}∣

∣

∣
0
〉

= i (qρgµν − qνgµρ)ΠV T (q2) , (6.6)

where Tµν(x) = ū(x)σµνd(x) and Vµ(x) = ū(x)γµd(x).

Using dimensional regularization with minimal subtraction, a straightforward compu-

tation of the diagrams of figure 1 leads to

ΠV T (q2) = −2Λ1 − Ω94 q2 +
Λ2

32π2F 2
π

[

2

ǫ̂
− log (−q2) +

8

3

]

q2 , (6.7)

where
2

ǫ̂
=

2

ǫ
− γE + log 4π, ǫ = 4 − d . (6.8)

In χPT, renormalization proceeds order by order in the chiral expansion. This means that

the logarithmic divergence of figure 1(c) has to be absorbed by the counterterm Ω94 of

figure 1(b) to render ΠV T (q2) finite. This defines the renormalized coupling ΩR
94 to be

Ω94 = ΩR
94(µ) +

Λ2

16π2F 2
π

µ−ǫ

ǫ̂
, (6.9)
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where the chiral scale µ in ΩR
94 shows the arbitrariness in subtracting the divergence from

the bare low energy coupling Ω94. The fully renormalized Green’s function therefore reads

ΠV T (q2) = −2Λ1 − ΩR
94(µ) q2 +

Λ2

32π2F 2
π

[

8

3
− log

(

−
q2

µ2

)]

q2 . (6.10)

So far, the scale dependence associated to the tensor current has been implicitly stored into

Λ1, Ω94 and Λ2. If we now introduce the aforementioned parameter b0, we find Λ1,2 = b0 λ1,2

and Ω94 = b0 ω94 and as a result

ΠV T (q2) = −2λ1 b0 − ωR
94(µ) b0 q2 +

λ2 b0

32π2F 2
π

[

8

3
− log

(

−
q2

µ2

)]

q2 . (6.11)

Notice that with the b0 parameter, the chiral scale and the QCD scale factorize.

For comparison consider now the following scalar-pseudoscalar two-point Green’s func-

tion:

ΠSS−PP (q) = i

∫

d4x eiq·x
〈

0
∣

∣

∣
T

{

S(x)S†(0) − P (x)P †(0)
}

∣

∣

∣
0
〉

, (6.12)

where S(x) = ū(x)d(x) and P (x) = ū(x)iγ5d(x). After evaluating the corresponding

Feynman diagrams, one obtains, in the chiral limit,

ΠSS−PP (q2) =
2F 2

0 B2
0

q2
+ 32B2

0 L8 +
5B2

0

48π2

[

2

ǫ̂
− log (−q2) + 2

]

. (6.13)

Again, the previous equation determines the (chiral) scale dependence of the renormalized

coupling:

L8 = LR
8 (µ) −

5

48

1

16π2

µ−ǫ

ǫ̂
, (6.14)

leading to the one-loop renormalized two-point Green’s function

ΠSS−PP (q2) =
2F 2

0 B2
0

q2
+ 32B2

0 LR
8 (µ) +

5B2
0

48π2

[

2 − log

(

−q2

µ2

)]

. (6.15)

All the QCD scale dependence, arising from the non-conservation of the scalar and pseu-

doscalar currents, is factored out in B0, whereas LR
8 (µ) shows the running with the chiral

scale. Notice the analogy with eq. (6.11).

Unfortunately, b0 cannot be matched onto the QCD Lagrangian in a way similar to

what is done for B0: the lowest dimension operators linear in the tensor source (and

consequently in b0) are coupled to the low-energy couplings Λ1 and Λ2. These couplings

are insensitive to pion dynamics and instead do receive contributions from vector-meson

resonances [23]. Therefore, there is an inherent ambiguity in the determination of b0,

because it cannot be decoupled from Λ1 and Λ2. The dimensionful coupling b0 should not

contain information on the integrated degrees of freedom of the theory, but otherwise it

remains unspecified. To avoid confusion, we have omitted in our treatment any reference

to b0.

As a result, one should keep in mind that, besides the chirally renormalized low-energy

couplings, each operator with n tensor sources bears a non-vanishing anomalous dimension,

namely n γT .
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7. Conclusions

We have built the most general C,P and chiral invariant Lagrangian to O(p4) and O(p6)

including the sources coupled to the tensor Dirac bilinear current ψ̄σµνψ. We have assigned

the tensor sources with a chiral counting such as to preserve the original scheme of even

terms in the chiral expansion. In order to end up with a minimal set of operators use has

been made of the leading-order equations of motion, integration by parts and the Bianchi

identity. Specialization to nf = 2, 3 provides additional relations by the use of the Cayley-

Hamilton theorem, the full set of which are listed in the appendix. For the three-flavor

case one finds 110 new operators and 3 contact terms, while for two flavors one ends up

with 75 operators and 3 contact terms. We have also shown that operators contributing to

the odd-intrinsic-parity sector with tensor fields start not before O(p8).
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A. Cayley-Hamilton relations

The analysis in the main text to build the basis of operators has dealt with general SU(nf ).

In practice, however, one wants to specialize to the phenomenologically relevant cases,

nf = 2 and nf = 3. The Cayley-Hamilton theorem states that any square n × n matrix

A satisfies its own characteristic equation, χn(A) = 0. This sets a relation between A

and their invariants (traces and determinant). The form of the relation depends on the

dimensionality n of the linear space. For instance,

χ2(A) = A2 − 〈A〉A + (detA)12×2 = 0, (n = 2);

χ3(A) = A3 − 〈A〉A2 +
〈A〉2 − 〈A2〉

2
A − (detA)13×3 = 0, (n = 3). (A.1)

One immediate consequence of the previous equations is that the determinant of any matrix

is a function of its traces. We have implicitly used this information to write all chiral

invariants solely in terms of traces. Solving the previous equations for the determinant,
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one finds

A2 − 〈A〉A +
〈A〉2 − 〈A2〉

2
12×2 = 0 ,

A3 − 〈A〉A2 +
〈A〉2 − 〈A2〉

2
A −

[

〈A3〉

3
−

〈A2〉〈A〉

2
−

〈A〉3

6

]

13×3 = 0 . (A.2)

Cayley-Hamilton relations therefore set constraints between traces. For these constraints

to be non-trivial, one has to build relations involving at least (n+1) matrices. For instance,

for n = 2 the quantity 〈aχ2(b + c)〉 gives

〈a{b, c}〉 − 〈a〉〈bc〉 − 〈b〉〈ca〉 − 〈c〉〈ab〉 + 〈a〉〈b〉〈c〉 = 0 , (A.3)

whereas for n = 3, using 〈aχ3(b + c + d)〉, one ends up with

〈ab{c, d}〉+〈ac{b, d}〉+〈ad{b, c}〉−〈a{b, c}〉〈d〉−〈a{b, d}〉〈c〉−〈a{c, d}〉〈b〉−

−〈b{c, d}〉〈a〉 − 〈ab〉〈cd〉 − 〈ac〉〈bd〉 − 〈ad〉〈bc〉 + 〈a〉〈b〉〈cd〉 + 〈a〉〈c〉〈bd〉+

+〈a〉〈d〉〈bc〉 + 〈b〉〈c〉〈ad〉 + 〈b〉〈d〉〈ac〉 + 〈c〉〈d〉〈ab〉 − 〈a〉〈b〉〈c〉〈d〉 = 0 . (A.4)

After imposing the Cayley-Hamilton relations, in table 2 we have favored the terms with a

minimum number of traces, bearing in mind that these are the dominant ones in a large-Nc

expansion of the chiral Lagrangian.

A.1 SU(3)

For nf = 3, use of eq. (A.4) leads to the following relations,

i 〈t+µν [uµ, uα]〉 〈uαuν〉 [Y6] = Y1 + 2Y3 + Y4 − Y5,

i 〈t+µνuα〉 〈u
αuµuν〉 [Y7] = Y1 + Y2 −

1

2
Y5 − Y8,

〈t+µν〉
〈

tµν
+

〉

〈uαuα〉 [Y21] = −4Y9 − 2Y10 + Y14 + 2Y16 + 4Y19,

〈t+µν〉
〈

tµα
+

〉

〈uαuν〉 [Y22] = −2Y11 − 2Y12 − Y13 + Y15 + Y17 + Y18 + 2Y20,

〈t−µν〉
〈

tµα
−

〉

〈uαuν〉 [Y30] = −2Y23 − 2Y24 − Y25 + Y26 + Y27 + Y28 + 2Y29,

〈t+µνuα〉
〈

fµν
+ uα

〉

[Y64] = Y57 + Y58 −
1

2
Y62 − Y67,

〈t+µνuα〉
〈

fµα
+ uν

〉

[Y65] = Y59 + Y60 + Y61 − Y63 − Y66 − Y68.

A.2 SU(2)

The relations derived in the previous section also hold for two flavors. In addition, repetitive

use of eq. (A.3) can be used to reduce monomials with multiple traces containing at least

three chiral operators. We find

i 〈t+µν {uαuα, uµuν}〉 [Y1] = 2Y3,

i 〈t+µν {uα, uµuαuν}〉 [Y4] = −Y2 − Y3,

i 〈t+µνu
µuν〉 〈uαuα〉 [Y5] = 2Y3,

i 〈t+µν〉 〈uαuαuµuν〉 [Y8] = 0,
〈

t+µνtµν
+

〉

〈uαuα〉 [Y14] = 2Y9,
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〈

t+µνtµα
+

〉

〈uνuα〉 [Y15] = Y11 + Y12,

〈t+µνuα〉
〈

tµα
+ uα

〉

[Y16] = Y9 + Y10 − Y19,

〈t+µνu
α〉

〈

tµα
+ uν

〉

[Y17] = Y12 +
1

2
Y13 −

1

2
Y20,

〈t+µνu
ν〉

〈

tµα
+ uα

〉

[Y18] = Y11 +
1

2
Y13 −

1

2
Y20,

〈

t−µνtµα
−

〉

〈uνuα〉 [Y26] = Y23 + Y24,

〈t−µνu
α〉

〈

tµα
− uν

〉

[Y27] = Y24 +
1

2
Y25 −

1

2
Y29,

〈t−µνu
ν〉

〈

tµα
− uα

〉

[Y28] = Y23 +
1

2
Y25 −

1

2
Y29,

〈t+µν〉
〈

tµν
+

〉

〈χ+〉 [Y37] = −2Y31 + Y33 + 2Y34,

〈t−µν〉
〈

tµν
+

〉

〈χ−〉 [Y38] = −2Y32 + Y35 + 2Y36,

i 〈χ+〉 〈t+µνuµuν〉 [Y41] =
1

2
Y39 + Y40,

i 〈t+µν〉 〈χ+uµuν〉 [Y42] =
1

2
Y39 − Y40,

i 〈χ−〉 〈t−µνuµuν〉 [Y45] =
1

2
Y43 + Y44,

i 〈t−µν〉 〈χ−uµuν〉 [Y46] =
1

2
Y43 − Y44,

〈

t+µνf
µν
+

〉

〈uαuα〉 [Y62] = Y57,
〈

t+µνf
µα
+

〉

〈uνuα〉 [Y63] =
1

2
(Y59 + Y60) ,

〈t+µνuν〉
〈

fµα
+ uα

〉

[Y66] =
1

2
(Y60 + Y61) ,

〈t+µν〉
〈

fµν
+ uαuα

〉

[Y67] = 0,

〈t+µν〉
〈

fµα
+ {uα, uν}

〉

[Y68] = 0,
〈

t+µνf
µν
+

〉

〈χ+〉 [Y79] = Y74 − Y77,
〈

t−µνf
µν
+

〉

〈χ−〉 [Y80] = Y75 − Y78,

i
〈

tνρ
−

〉 〈

t+µνhµ
ρ

〉

[Y83] = Y81 − Y82,

i 〈t−µν〉
〈

f νρ
− fµ

+ρ

〉

[Y87] = Y86,

i
〈

tνρ
−

〉 〈

f−µνt
µ
+ρ

〉

[Y93] = Y90 − Y91 − Y93 − 4Y119,

i 〈∂µt−µν〉
〈

f νρ
+ uρ

〉

[Y101] = Y98,

i 〈∂ρt−µν〉
〈

fµν
+ uρ

〉

[Y102] = Y99,

i 〈∂ρt−µν〉
〈

fµρ
+ uν

〉

[Y103] = Y100,

i 〈t+µν〉
〈

∇λtµν
− uλ

〉

[Y109] = Y104 − Y106,

i 〈t+νλ〉
〈

∇µtµν
− uλ

〉

[Y110] =
1

2
Y11+

1

4
Y13−

1

2
Y23−

1

4
Y25+Y52−Y53+Y105−Y107−4Y118,

i 〈t−νλ〉
〈

∇µtµν
+ uλ

〉

[Y111] = Y105 − Y108,

i 〈t−µν〉
〈

hνρfµ
+ρ

〉

[Y117] = Y116.
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i 〈t+µν {uαuα, uµuν}〉 1 1

i 〈t+µνuαuµuνuα〉 2 2 1

i 〈t+µνuµuαuαuν〉 3 3 2

i 〈t+µν {uα, uµuαuν}〉 4 4

i 〈t+µνuµuν〉 〈uαuα〉 5 5

i 〈t+µν [uµ, uα]〉 〈uαuν〉 6

i 〈t+µνuα〉 〈u
αuµuν〉 7

i 〈t+µν〉 〈uαuαuµuν〉 8 6

〈

t+µνtµν
+ uαuα

〉

9 7 3
〈

t+µνuαtµν
+ uα

〉

10 8 4
〈

t+µνtµα
+ uαuν

〉

11 9 5
〈

t+µνtµα
+ uνuα

〉

12 10 6
〈

t+µν

(

uνtµα
+ uα + uαtµα

+ uν
)〉

13 11 7
〈

t+µνtµν
+

〉

〈uαuα〉 14 12
〈

t+µνtµα
+

〉

〈uνuα〉 15 13

〈t+µνuα〉
〈

tµν
+ uα

〉

16 14

〈t+µνuα〉
〈

tµα
+ uν

〉

17 15

〈t+µνu
ν〉

〈

tµα
+ uα

〉

18 16

〈t+µν〉
〈

tµν
+ uαuα

〉

19 17 8

〈t+µν〉
〈

tµα
+ {uα, uν}

〉

20 18 9

〈t+µν〉
〈

tµν
+

〉

〈uαuα〉 21

〈t+µν〉
〈

tµα
+

〉

〈uαuν〉 22

〈

t−µνtµα
− uαuν

〉

23 19 10
〈

t−µνtµα
− uνuα

〉

24 20 11
〈

t−µν

(

uνtµα
− uα + uαtµα

− uν
)〉

25 21 12
〈

t−µνtµα
−

〉

〈uνuα〉 26 22

〈t−µνuα〉
〈

tµα
− uν

〉

27 23

〈t−µνu
ν〉

〈

tµα
− uα

〉

28 24

〈t−µν〉
〈

tµα
− {uα, uν}

〉

29 25 13

〈t−µν〉
〈

tµα
−

〉

〈uαuν〉 30

〈

t+µνtµν
+ χ+

〉

31 26 14
〈

t+µνtµν
− χ−

〉

32 27 15
〈

t+µνtµν
+

〉

〈χ+〉 33 28 16

〈t+µνχ+〉
〈

tµν
+

〉

34 29 17
〈

t+µνtµν
−

〉

〈χ−〉 35 30 18

〈t+µνχ−〉
〈

tµν
−

〉

36 31 19

〈t+µν〉
〈

tµν
+

〉

〈χ+〉 37 32

Table 2: List of operators contributing to the O(p6) La-

grangian.
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〈t+µν〉
〈

tµν
−

〉

〈χ−〉 38 33

i 〈t+µν {χ+, uµuν}〉 39 34 20

i 〈t+µνuµχ+uν〉 40 35 21

i 〈χ+〉 〈t+µνu
µuν〉 41 36

i 〈t+µν〉 〈χ+uµuν〉 42 37

i 〈t−µν {χ−, uµuν}〉 43 38 22

i 〈t−µνuµχ−uν〉 44 39 23

i 〈χ−〉 〈t−µνu
µuν〉 45 40

i 〈t−µν〉 〈χ−uµuν〉 46 41

〈t−µν (hνρuρu
µ − uµuρh

νρ)〉 47 42 24

〈t−µν (hνρuµuρ − uρu
µhνρ)〉 48 43 25

〈t−µν (uρh
νρuµ − uµhνρuρ)〉 49 44 26

〈t−µν〉 〈h
νρ [uρ, u

µ]〉 50 45 27

〈

∇ρt+µν∇
ρtµν

+

〉

51 46 28
〈

∇µtµν
+ ∇ρt+ρν

〉

52 47 29
〈

∇µtµν
− ∇ρt−ρν

〉

53 48 30

〈∂ρt+µν〉
〈

∂ρtµν
+

〉

54 49 31

〈∂µt+νµ〉
〈

∂ρtν+ρ

〉

55 50 32

〈∂µt−νµ〉
〈

∂ρtν−ρ

〉

56 51 33

〈

t+µν

{

fµν
+ , uαuα

}〉

57 52 34
〈

t+µνuαfµν
+ uα

〉

58 53 35
〈

t+µν

(

fµα
+ uνuα + uαuνfµα

+

)〉

59 54 36
〈

t+µν

(

fµα
+ uαuν + uνuαfµα

+

)〉

60 55 37
〈

t+µν

(

uνfµα
+ uα + uαfµα

+ uν
)〉

61 56 38
〈

t+µνfµν
+

〉

〈uαuα〉 62 57
〈

t+µνfµα
+

〉

〈uνuα〉 63 58

〈t+µνuα〉
〈

fµν
+ uα

〉

64

〈t+µνuα〉
〈

fµα
+ uν

〉

65

〈t+µνu
ν〉

〈

fµα
+ uα

〉

66 59

〈t+µν〉
〈

fµν
+ uαuα

〉

67 60

〈t+µν〉
〈

fµα
+ {uα, uν}

〉

68 61

〈

t−µν

[

fµν
− , uαuα

]〉

69 62 39
〈

t−µν

(

fµα
− uνuα − uαuνfµα

−

)〉

70 63 40
〈

t−µν

(

fµα
− uαuν − uνuαfµα

−

)〉

71 64 41
〈

t−µν

(

uνfµα
− uα − uαfµα

− uν
)〉

72 65 42

Table 2: List of operators contributing to the O(p6) La-

grangian.

– 19 –



J
H
E
P
0
9
(
2
0
0
7
)
0
7
8

monomial Yi SU(nf ) SU(3) SU(2)

〈t−µν〉
〈

fµα
− [uα, uν ]

〉

73 66 43
〈

t+µν

{

fµν
+ , χ+

}〉

74 67 44
〈

t−µν

{

fµν
+ , χ−

}〉

75 68 45
〈

t+µν

[

fµν
− , χ−

]〉

76 69 46

〈t+µν〉
〈

fµν
+ χ+

〉

77 70 47

〈t−µν〉
〈

fµν
+ χ−

〉

78 71 48
〈

t+µνfµν
+

〉

〈χ+〉 79 72
〈

t−µνfµν
+

〉

〈χ−〉 80 73

i
〈

t+µν

{

tνρ
− , hµ

ρ

}〉

81 74 49

i 〈t+µν〉
〈

tνρ
− hµ

ρ

〉

82 75 50

i
〈

tνρ
−

〉

〈t+µνhµ
ρ〉 83 76

i
〈

t+µνf
µρ
− f ν

−ρ

〉

84 77 51

i
〈

t+µνf
µρ
+ f ν

+ρ

〉

85 78 52

i
〈

t−µν

{

f νρ
− , fµ

+ρ

}〉

86 79 53

i 〈t−µν〉
〈

f νρ
− fµ

+ρ

〉

87 80

i
〈

t+µνt
µρ
+ tν+ρ

〉

88 81 54

i
〈

t+µνt
µρ
− tν−ρ

〉

89 82 55

i
〈

f+µνt
νρ
+ tµ+ρ

〉

90 83 56

i
〈

f+µνt
νρ
− tµ−ρ

〉

91 84 57

i
〈

tµ+ρ

〉 〈

f−µνt
νρ
−

〉

92 85 58

i
〈

tνρ
−

〉 〈

f−µνt
µ
+ρ

〉

93 86

〈

∇µtµν
+ ∇αf+αν

〉

94 87 59

i 〈∇ρt+µν [hµρ, uν ]〉 95 88 60

i 〈∇µt+µν [hνρ, uρ]〉 96 89 61

i
〈

∇µt+µν

[

f νρ
− , uρ

]〉

97 90 62

i
〈

∇µt−µν

{

f νρ
+ , uρ

}〉

98 91 63

i
〈

∇ρt−µν

{

fµν
+ , uρ

}〉

99 92 64

i
〈

∇ρt−µν

{

fµρ
+ , uν

}〉

100 93 65

i 〈∂µt−µν〉
〈

f νρ
+ uρ

〉

101 94

i 〈∂ρt−µν〉
〈

fµν
+ uρ

〉

102 95

i 〈∂ρt−µν〉
〈

fµρ
+ uν

〉

103 96

i
〈{

∇λtµν
− , t+µν

}

uλ
〉

104 97 66

i
〈{

∇µtµν
+ , t−νλ

}

uλ
〉

105 98 67

i
〈

∂λtµν
−

〉 〈

t+µνu
λ
〉

106 99 68

Table 2: List of operators contributing to the O(p6) La-

grangian.
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i
〈

∂µtµν
−

〉 〈

t+νλuλ
〉

107 100 69

i
〈

∂µtµν
+

〉 〈

t−νλuλ
〉

108 101 70

i 〈t+µν〉
〈

∇λtµν
− uλ

〉

109 102

i 〈t+νλ〉
〈

∇µtµν
− uλ

〉

110 103

i 〈t−νλ〉
〈

∇µtµν
+ uλ

〉

111 104

〈

tµν
− [χ+µ, uν ]

〉

112 105 71
〈

tµν
+ [χ−µ, uν ]

〉

113 106 72

i 〈t+µνhµαhν
α〉 114 107 73

i
〈

t+µν

[

hµα, f ν
−α

]〉

115 108 74

i
〈

t−µν

{

hµα, f ν
+α

}〉

116 109 75

i 〈t−µν〉
〈

hµαf ν
+α

〉

117 110

Contact terms

〈

DµtµνDαt†αν

〉

118 111 76

i
〈

t†νρtµρFLµν + tνρt†µρFRµν

〉

119 112 77
〈

tµνχ†Fµν
R + χt†µνF

µν
R + t†µνχFµν

L + χ†tµνFµν
L

〉

120 113 78

Table 2: List of operators contributing to the O(p6) La-

grangian.
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